AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python

news/2024/12/24 2:57:25 标签: 人工智能, 支持向量机, python

支持向量机是AI开发中最常见的一种算法。之前我们已经一起初步了解了它的概念和应用,今天我们用它来进行一次文本情感分析训练。

一、概念温习

支持向量机(SVM)是一种监督学习算法,广泛用于分类和回归问题。

它的核心思想是通过在高维空间中寻找一个超平面,将数据分成不同的类别。SVM 通过最大化类间的边界(即间隔)来提高模型的泛化能力,尤其适合处理小样本和高维数据。

SVM 在文本情感分析中的作用尤为突出,因为文本数据通常具有高维特征(例如词汇表的大小),而 SVM 擅长于处理这种维度较高的稀疏数据。

通过将文本转化为数值特征(如 TF-IDF),SVM 能有效地在情感分类任务中学习到情感标签与文本内容之间的关系。尤其在情感分析中,SVM 能够识别出情感倾向的关键特征,从而准确地对文本进行分类(如“积极”或“消极”)。其优越的分类性能和对高维数据的适应性使得 SVM 成为情感分析中常用的算法。

图1. 支持向量机的特点 

二、实现逻辑

一个用Python 和支持向量机(SVM)实现的情感分析主要逻辑是这样的:

  • 首先,脚本加载一个包含文本和标签(“Positive”或“Negative”)的 JSON 数据集,并将标签转换为二元分类(1 为积极,0 为消极)。
  • 接着,使用 TfidfVectorizer 将文本数据转换为数值特征,去除常见的停用词并限制特征维度。
  • 然后,使用 SVM 模型(线性核)对训练集进行训练,评估其在测试集上的表现,输出分类报告。
  • 训练完成后,模型和 TF-IDF 向量化器被保存为文件,以便后续加载使用。
  • 我们还需要一个调用函数 可以命名为:predict_sentiment,用于加载保存的模型并对新输入的文本进行情感预测。整个流程为文本情感分类任务提供了一个标准的解决方案。

我们可以用这样一个流程框图来描述整个过程:(点击放大查看)

图2. 案例实现逻辑 

 三、训练数据准备

在机器学习中,数据是模型训练的基础,直接影响模型的性能和准确性。对于文本情感分析任务,data.json 中的训练数据至关重要。该数据集包含大量标注了情感标签(“Positive”和“Negative”)的文本,能够为模型提供学习情感分类的实例。

通过这些带标签的文本,支持向量机(SVM)可以识别文本中的情感特征,并学会区分不同情感类别。在情感分析中,数据的质量和多样性决定了模型的泛化能力。如果数据集中的文本种类丰富、情感标签明确且分布均匀,模型能够更好地捕捉到情感表达的细微差异。此外,适当的训练数据量能帮助减少过拟合,提升模型在新数据上的表现。因此,data.json 提供的训练素材为模型提供了必要的输入和监督信息,是模型准确预测情感的重要保障。

在案例中,我的素材内包括了50个短句和与之对应的标签,以供模型训练使用,我将这个标签文件放在了素材中,需要的可自行下载。 

SVM 是一种非常适合文本分类的算法,尤其是当文本数据不太多且维度较高时。下面是一个完整的步骤说明,帮助你使用 Python 实现 SVM 来训练和保存一个情感分析模型。

四、实现步骤概述:

  1. 数据预处理:加载数据,进行必要的文本处理(如分词、去除停用词等)。
  2. 特征提取:将文本数据转换为数值形式(通常使用 TF-IDF)。
  3. 训练模型:使用支持向量机(SVM)来训练情感分析模型。
  4. 模型保存:将训练好的模型保存,以便以后使用。
  5. 模型调用:加载保存的模型并进行预测。

1. 安装必要的库

首先,确保你安装了必要的 Python 库。你可以使用以下命令安装:

pip install scikit-learn numpy pandas joblib

2. 数据加载与预处理

假设你已经将数据保存到 data.json 文件中,首先加载数据,并对文本进行预处理。(data.json 我已经放在本文的资源中)

import json
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import classification_report
import joblib

# 加载 JSON 数据
with open('data.json', 'r') as file:
    data = json.load(file)

# 创建 DataFrame
df = pd.DataFrame({
    'text': data['text'],
    'label': data['label']
})

# 将标签转换为数字,'Positive' -> 1, 'Negative' -> 0
df['label'] = df['label'].apply(lambda x: 1 if x == 'Positive' else 0)

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.3, random_state=42)

# 显示数据分割情况
print(f"训练集大小: {len(X_train)}, 测试集大小: {len(X_test)}")

3. 特征提取(使用 TF-IDF)

我们将使用 TF-IDF 来将文本数据转换为数值特征。TF-IDF 是一种常见的文本特征提取方法,它考虑了词频和逆文档频率。

# 创建 TF-IDF 向量化器
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_features=5000)

# 训练 TF-IDF 向量化器并转换训练集和测试集
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)

4. 训练支持向量机(SVM)模型

现在,我们可以训练一个支持向量机(SVM)模型,进行文本分类。

# 创建 SVM 分类器
svm_classifier = SVC(kernel='linear')  # 使用线性核函数

# 训练模型
svm_classifier.fit(X_train_tfidf, y_train)

# 预测
y_pred = svm_classifier.predict(X_test_tfidf)

# 输出模型性能评估
print(classification_report(y_test, y_pred))

5. 保存模型

训练完成后,我们可以将模型保存为一个文件,以便以后加载并使用。

# 保存 SVM 模型和 TF-IDF 向量化器
joblib.dump(svm_classifier, 'svm_sentiment_model.pkl')
joblib.dump(tfidf_vectorizer, 'tfidf_vectorizer.pkl')

print("模型已保存!")

6. 加载模型并进行预测

按照上面的操作以后,你可以随时加载保存的模型来进行预测。以下是如何加载并使用保存的模型:

# 加载已保存的模型和 TF-IDF 向量化器
svm_model = joblib.load('svm_sentiment_model.pkl')
tfidf_vectorizer = joblib.load('tfidf_vectorizer.pkl')

# 示例预测
def predict_sentiment(text):
    # 将文本转换为 TF-IDF 特征
    text_tfidf = tfidf_vectorizer.transform([text])
    # 使用模型进行预测
    prediction = svm_model.predict(text_tfidf)
    return "Positive" if prediction[0] == 1 else "Negative"

# 测试预测
sample_text = "I am so happy with my new job!"
result = predict_sentiment(sample_text)
print(f"预测情感: {result}")

五、完整代码总结:

import json
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.metrics import classification_report
import joblib

# 加载 JSON 数据
with open('data.json', 'r') as file:
    data = json.load(file)

# 创建 DataFrame
df = pd.DataFrame({
    'text': data['text'],
    'label': data['label']
})

# 将标签转换为数字
df['label'] = df['label'].apply(lambda x: 1 if x == 'Positive' else 0)

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['label'], test_size=0.3, random_state=42)

# TF-IDF 向量化
tfidf_vectorizer = TfidfVectorizer(stop_words='english', max_features=5000)
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)

# 训练 SVM 模型
svm_classifier = SVC(kernel='linear')
svm_classifier.fit(X_train_tfidf, y_train)

# 预测
y_pred = svm_classifier.predict(X_test_tfidf)
print(classification_report(y_test, y_pred))

# 保存模型
joblib.dump(svm_classifier, 'svm_sentiment_model.pkl')
joblib.dump(tfidf_vectorizer, 'tfidf_vectorizer.pkl')

# 加载模型并进行预测
def predict_sentiment(text):
    text_tfidf = tfidf_vectorizer.transform([text])
    prediction = svm_classifier.predict(text_tfidf)
    return "Positive" if prediction[0] == 1 else "Negative"

sample_text = "I am so happy with my new job!"
result = predict_sentiment(sample_text)
print(f"预测情感: {result}")

这样我们就可以用训练好的 SVM 模型来进行文本情感分析了!

六、测似结果

负面文本测试结果:

正面文本测试结果:

 

需要注意的是:实际上,训练数据中的50条样本,远远不足以训练出一个可以真实应用的模型,因此才测试的时候,你可以将数据中的原文短句进行测试,这样准确率会很高。

七、应用场景 

虽然这个模型看起来很简单,能处理的情感维度也比较低,但是在实践中,是有很多这样的应用场景的,以下是一些适用场景:

1. 小型文本数据集

当训练数据集相对较小且标注数据有限时,SVM 模型能够有效工作。它通过最大化类别间的间隔,能够在样本较少的情况下提供较好的泛化能力。因此,对于一些规模较小的情感分析任务,这种简单模型非常适用。

2. 情感分类任务

适用于较为简单的情感分类任务,比如判断用户评价、评论或社交媒体帖子中的情感倾向(如正面或负面)。如果文本内容较短,特征维度不高,SVM 能够较好地学习文本的情感模式。

3. 低资源环境

在硬件或计算资源受限的环境下,SVM 由于其相对较小的内存需求和计算复杂度,适合在资源有限的设备上运行,比如移动端或边缘计算设备。

4. 不需要深度语义理解的应用

当任务的文本情感较为直接和明显时,简单的 SVM 模型能够有效分类。例如,用户评论中的情感一般较为直接(如“这款产品太好用了” vs “这个产品太差了”)。这类场景不需要复杂的深度学习模型,SVM 可以提供足够的准确性。

5. 需要快速部署和预测的场景

在需要快速部署并进行情感分类的场景中,简单的 SVM 模型可以快速训练并进行预测。由于模型较小,训练和推理速度较快,非常适合实时情感分析系统(如实时监测社交媒体评论或产品评价)。

6. 应用于情感标签较少的任务

如果情感分类任务中的标签较少(比如只有正面和负面两个情感类别),SVM 模型非常适用。其线性核函数能够快速找到最佳分隔超平面,并且能较好地处理二分类问题。

这次的模型训练主要是为了讲解如何实现的方法。有问题可以留言我们一起讨论!

谢谢观看本文!感谢点赞关注!


http://www.niftyadmin.cn/n/5797245.html

相关文章

深度学习中的MSE与MAE

有空再把内容补上来 均方误差(Mean Squared Error,MSE)和平均绝对误差(Mean Absolute Error,MAE)是深度学习中常用的两种损失函数,用于衡量模型预测结果与真实标签之间的差异,以下是…

robots协议

robots协议,也称为爬虫协议、爬虫规则、机器人协议等,其全称是“网络爬虫排除标准”(Robots Exclusion Protocol)。以下是对robots协议的详细介绍: 一、定义与功能 robots协议是指网站可以建立一个名为robots.txt的文…

我的个人博客正式上线了!

我的个人博客终于上线啦点此访问 经过一番折腾,我的个人博客终于上线啦!这是一个属于我自己的小天地,可以用来记录生活点滴、技术分享以及一些随想。 在这里,我想分享一下搭建博客的整个过程和心得体会。 为什么要搭建博客&…

与乐鑫相约 CES 2025|创新技术引领物联网与嵌入式未来

2025 国际消费电子产品展览会 (International Consumer Electronics Show, CES) 将于 2025 年 1 月 7 至 10 日在美国拉斯维加斯盛大开幕。作为全球规模最大、水准最高,且影响力最广的消费电子类科技盛会,CES 每年都吸引着全球行业领袖、开发者和技术爱好…

【计算机视觉基础CV-图像分类】02-入门详解图像分类、经典数据集、比赛与冠军图像模型演进史

前言 图像分类(Image Classification)是计算机视觉(Computer Vision)中一项基础且核心的任务。简单来说,就是让计算机从给定的类别集合中,为一张输入图片分配一个正确的类别标签。这个过程听起来直观&…

流式处理,为什么Flink比Spark Streaming好?

1 、反压机制 Flink 在数据传输过程中使用了分布式阻塞队列,一个阻塞队列中,当队列满了以后发送者会被天然阻塞住,这种阻塞功能相当于给这个阻塞队列提供了反压的能力。 Spark Streaming 为了实现反压这个功能,在原来的架构基…

从零玩转CanMV-K230(4)-小核Linux驱动开发参考

前言 K230 芯片是一款基于 RISC-V 架构的端侧 AIoT 芯片,包含两个核心: CPU 1: RISC-V 处理器,1.6GHz,32KB I-cache, 32KB D-cache, 256KB L2 Cache,128bit RVV 1.0扩展 CPU 0: RISC-V 处理器,0.8GHz&am…

《深入浅出 Servlet:Java Web 开发的基石》(二)

ServletConfig(熟练) ServletConfig对象对应web.xml文件中的<servlet>元素。例如你想获取当前Servlet在web.xml文件中的配置名&#xff0c;那么可以使用servletConfig.getServletName()方法获取&#xff01; 你不能自己去创建ServletConfig对象&#xff0c;Servlet的in…